Student Projects

Project Descriptions

Additional projects are always available. Please consult our list of ongoing research projects  and contact the involved people listed on the top right to enquire about additional projects.


Special projects/internships:

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Master Thesis - Signal Processing for Neurological Data

We are offering a Masters thesis project for a motivated student to develop a complete signal processing pipeline tailored to neurological data, with the goal of detecting early biomarkers of cognitive or neurological conditions. This project blends neuroscience, signal processing, and artificial intelligence in a practical and high-impact context.

Keywords

signal processing, neurological data, fNIRS, EEG, neuroimaging, brain-computer interface, biomedical signal processing, artifact removal, noise reduction, ICA, wavelet denoising, feature extraction, FFT, PSD, ERP, hemodynamic response, connectivity analysis, machine learning, AI, classification, clustering, SVM, Random Forest, deep learning, PCA, LDA, anomaly detection, biomarkers, neuroscience, Python, MNE, scikit-learn, PyTorch, TensorFlow, Optohive, ETH Zurich, Relab

Labels

Master Thesis , ETH Zurich (ETHZ)

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-05-22 , Earliest start: 2025-08-01 , Latest end: 2026-06-01

Organization Rehabilitation Engineering Lab

Hosts Willhaus Marc

Topics Medical and Health Sciences , Engineering and Technology , Biology , Physics

Master Thesis - Deep Learning and AI Modelling of Neurological Data

We are looking for a master student who codevelops AI and machine learning models and inference pipelines on the base of neurological fNIRS sensory data.

Keywords

deep learning, time-series, fNIRS, EEG, EMG, neurotechnology, neurological data, sequence modeling, CNN, LSTM, GRU, Transformer, hybrid models, self-supervised learning, contrastive learning, biomarker discovery, AI, machine learning, brain-computer interface, data augmentation, model interpretability, Grad-CAM, SHAP, saliency maps, biomedical signal processing, PyTorch, TensorFlow, Python, Optohive, ETH Zurich, Relab

Labels

Master Thesis , ETH Zurich (ETHZ)

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-05-22 , Earliest start: 2025-07-01 , Latest end: 2026-06-01

Organization Rehabilitation Engineering Lab

Hosts Willhaus Marc

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology , Physics

Exploring upper limb impairments using explainable AI on Virtual Peg Insertion Test data

This thesis aims to apply explainable AI techniques to analyze time series data from the Virtual Peg Insertion Test (VPIT), uncovering additional metrics that describe upper limb impairments in neurological subjects, such as those with stroke, Parkinson's disease, and multiple sclerosis. By preserving the full dimensionality of the data, the project will identify new patterns and insights to aid in understanding motor dysfunctions and support rehabilitation.

Keywords

Machine learning, rehabilitation, neurology, upper limb, impairment, explainable AI, SHAP, novel technology, assessment, computer vision, artificial intelligence

Labels

Master Thesis

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-05-20 , Earliest start: 2025-06-01

Organization Rehabilitation Engineering Lab

Hosts Domnik Nadine

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Comparing the Virtual Peg Insertion Test (VPIT) with the haptic device Inverse3 for assessing upper limb function

This thesis will compare the Virtual Peg Insertion Test (VPIT) with the Inverse3 haptic device by Haply to evaluate its effectiveness as a tool for assessing upper limb function. The focus will be on comparing both the hardware features and software capabilities to determine if the Inverse3 can serve as a valid alternative to VPIT for clinical assessments.

Keywords

Haptic device, virtual environment, rehabilitation, programming, health technology, assessment, software, hardware

Labels

Collaboration , Master Thesis

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-05-20 , Earliest start: 2025-06-01

Organization Rehabilitation Engineering Lab

Hosts Domnik Nadine

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Embedded algorithms of IMUs in a neurorehabilitation device

The goal of this project is to help develop embedded firmware for a imu based rehabilitation device. This project is part of the SmartVNS project which utilizes movement-gated control of vagus nerve stimulation for stroke rehabilitation.

Keywords

electrical engineering PCB Embedded systems neurorehabilitation

Labels

Semester Project , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-05-19 , Earliest start: 2024-01-06 , Latest end: 2024-12-31

Organization Rehabilitation Engineering Lab

Hosts Donegan Dane , Viskaitis Paulius

Topics Medical and Health Sciences , Engineering and Technology

Development and Testing of Electrical Systems for a SmartVNS Docking Station with Focus on Wireless Data Management

We are looking for an enthusiastic electrical/firmware engineer to design and implement the electrical and firmware aspects of a docking station for the SmartVNS device. The station will charge the device components (pulse generator and wrist motion tracker) and pull data from the pulse generator and motion tracker, uploading it to an online server via Wi-Fi. This project will also involve testing the reliability of data transfer and power systems under real-world conditions, providing valuable insights into the practical application of this technology.

Keywords

Electrical, embedded, electronic, engineering, biomedical

Labels

Internship , Bachelor Thesis , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-05-19 , Earliest start: 2024-08-18 , Latest end: 2025-10-01

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius

Topics Information, Computing and Communication Sciences , Engineering and Technology

Development of Regulatory Documentation for a Novel Neurorehabilitation Device: Preparation for FDA and Swissmedic Compliance

Stroke is a leading cause of long-term disability, affecting millions annually and necessitating innovative approaches to rehabilitation. The Rehabilitation Engineering Laboratory (RELab) at ETH Zurich is developing a novel closed-loop neurorehabilitation device that integrates real-time motion tracking with non-invasive brain stimulation to enhance neural plasticity and promote motor recovery in stroke patients. To advance this technology toward clinical trials, comprehensive regulatory documentation is essential to meet the stringent requirements of the U.S. Food and Drug Administration (FDA) and Swissmedic. This project focuses on preparing an Investigational Device Exemption (IDE) application for the FDA and supporting documentation for Swissmedic compliance, including technical descriptions, risk analyses, and clinical study protocols. The student will conduct literature reviews, draft regulatory documents, and support risk management in accordance with ISO 14971, contributing to the device’s regulatory pathway. This work offers a unique opportunity to gain expertise in medical device regulation, bridging biomedical engineering and neuroscience, and advancing a transformative solution for stroke rehabilitation.

Keywords

regulatory affairs, medical device, non-invasive brain stimulation, FDA, Swissmedic, investigational device exemption, IDE, stroke rehabilitation, compliance

Labels

Semester Project , Internship , Bachelor Thesis , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-05-19 , Earliest start: 2025-05-25 , Latest end: 2025-08-01

Organization Rehabilitation Engineering Lab

Hosts Donegan Dane

Topics Medical and Health Sciences , Engineering and Technology

Strategic Financial Modelling and Business Plan Development for a Breakthrough Neurorehabilitation Device

With over 14 million stroke cases annually, the global neurorehabilitation market presents a multi-billion-dollar opportunity for innovative solutions addressing motor recovery. The Rehabilitation Engineering Laboratory (RELab) at ETH Zurich is developing a revolutionary closed-loop neurorehabilitation device that leverages motion tracking and non-invasive brain stimulation to transform stroke rehabilitation. This project aims to develop a sophisticated financial model and a strategic business plan to propel the device to market leadership. The student will conduct market analysis, build financial projections, and craft a compelling business strategy, focusing on pricing, reimbursement, and investor engagement. By delivering investor-ready materials and a scalable commercialization plan, this work will position the device for rapid market entry and long-term success, offering the student a unique opportunity to blend business strategy, entrepreneurship, and healthcare innovation.

Keywords

financial modelling, business strategy, medical device, neurorehabilitation, startup, stroke rehabilitation, entrepreneurship, market entry, investment

Labels

Semester Project , Internship , Bachelor Thesis , Master Thesis

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-05-19 , Earliest start: 2025-05-25 , Latest end: 2025-09-01

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius

Topics Medical and Health Sciences , Engineering and Technology , Economics , Commerce, Management, Tourism and Services

Hardware Design Internship in Brain Imaging

Join us in revolutionizing brain imaging technologies and make it accessible for everyday use. Functional near-infrared spectroscopy (fNIRS) is an emerging technology that enables cost-effective and precise brain measurements, helping to improve neurotherapies and brain health.

Keywords

3D-printing, injection molding, design, brain imaging, neuro, wearables, health, startup

Labels

Internship

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-04-09 , Earliest start: 2025-04-10 , Latest end: 2025-06-26

Organization Rehabilitation Engineering Lab

Hosts Wyser Dominik

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Benefits and challenges of promoting minimally supervised therapy in a rehabilitation clinic

Increasing the therapy time can benefit patients in multiple ways. Group therapy (e.g., technology-assisted) allows clinics to increase the therapy dose for patients without increasing the workload for therapists. However, in practical implementation, some challenges often arise (e.g., patients not liking it) that limit the efficacy of group therapy. The aim of this project is to gain practical experience with group therapy sessions (i.e., supporting group therapy sessions at the Clinica Hildebrand in Brissago), identify barriers and benefits related to group therapy, and propose guidelines to improve the integration of group therapy in clinical practice.

Keywords

practical internship, research internship, clinical work, technology-assisted therapy, group therapy, minimally supervised therapy

Labels

Internship

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-02-12 , Earliest start: 2025-03-01 , Latest end: 2025-10-31

Applications limited to ETH Zurich , EPFL - Ecole Polytechnique Fédérale de Lausanne , Università della Svizzera italiana

Organization Rehabilitation Engineering Lab

Hosts Devittori Giada

Topics Medical and Health Sciences

If you would like to carry out a Studies on Mechatronics project in our group, please contact the assistant working on, or closest to, the research topic you are interested in.

We currently have an open studies on mechatronics project aiming to evaluate and compare mechatronic designs for sensory/mechanical stimulation and massage of the feet. If interested, please contact .

Your Own Project Ideas?

It is always possible to find a project for motivated students with innovative ideas in the fields of rehabilitation, assistive and healthcare technology as well as haptics and motor learning. Please contact us if you would like to pursue a project which is not on the list above.

JavaScript has been disabled in your browser