Student Projects

Project Descriptions

Additional projects are always available. Please consult our list of ongoing research projects  and contact the involved people listed on the top right to enquire about additional projects.


Special projects/internships:

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Exploring upper limb impairments using explainable AI on Virtual Peg Insertion Test data

This thesis aims to apply explainable AI techniques to analyze time series data from the Virtual Peg Insertion Test (VPIT), uncovering additional metrics that describe upper limb impairments in neurological subjects, such as those with stroke, Parkinson's disease, and multiple sclerosis. By preserving the full dimensionality of the data, the project will identify new patterns and insights to aid in understanding motor dysfunctions and support rehabilitation.

Keywords

Machine learning, rehabilitation, neurology, upper limb, impairment, explainable AI, SHAP, novel technology, assessment, computer vision, artificial intelligence

Labels

Master Thesis

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-02-18 , Earliest start: 2025-03-09

Organization Rehabilitation Engineering Lab

Hosts Domnik Nadine

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Comparing the Virtual Peg Insertion Test (VPIT) with the haptic device Inverse3 for assessing upper limb function

This thesis will compare the Virtual Peg Insertion Test (VPIT) with the Inverse3 haptic device by Haply to evaluate its effectiveness as a tool for assessing upper limb function. The focus will be on comparing both the hardware features and software capabilities to determine if the Inverse3 can serve as a valid alternative to VPIT for clinical assessments.

Keywords

Haptic device, virtual environment, rehabilitation, programming, health technology, assessment, software, hardware

Labels

Collaboration , Master Thesis

Description

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-02-18 , Earliest start: 2025-03-16

Organization Rehabilitation Engineering Lab

Hosts Domnik Nadine

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Embedded algorithms of IMUs in a neurorehabilitation device

The goal of this project is to help develop embedded firmware for a imu based rehabilitation device. This project is part of the SmartVNS project which utilizes movement-gated control of vagus nerve stimulation for stroke rehabilitation.

Keywords

electrical engineering PCB Embedded systems neurorehabilitation

Labels

Semester Project , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-02-14 , Earliest start: 2024-01-06 , Latest end: 2024-12-31

Organization Rehabilitation Engineering Lab

Hosts Donegan Dane , Viskaitis Paulius

Topics Medical and Health Sciences , Engineering and Technology

Analysis and modelling of Neurophysiological Data from Multisensory Recordings during aVNS Experiments

Join our research project focused on analysing complex neurophysiological data collected during non-invasive brain stimulation experiments. This project aims to optimise brain stimulation protocols for future stroke rehabilitation by investigating neural responses to various stimulation parameters. The data includes electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmography (PPG), inertial measurement unit (IMU) readings, pupilometry, and galvanic skin response (GSR). We aim to model brain states based on these measurements to define brain circuitry outcomes from stimulation and movement interactions, using advanced techniques like connectivity-based biomarkers. This modeling will help generalise findings to broader brain states, such as valence, attention, and stress.

Labels

Master Thesis

Goal

Tasks

Your Profile

Contact Details

More information

Open this project... 

Published since: 2025-02-14 , Earliest start: 2024-08-18 , Latest end: 2025-04-30

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius

Topics Medical and Health Sciences , Mathematical Sciences , Information, Computing and Communication Sciences

Feasibility of RehabCoach on Adherence to Unsupervised Robot-Assisted Therapy – Implementation and Evaluation of Smart Reminders

Adherence to rehabilitation therapy is essential for the recovery of hand functionality in stroke and traumatic brain injury (TBI) patients. However, maintaining engagement outside clinical settings remains a challenge. This project involves a feasibility study to evaluate the adherence of patients using the RehabCoach app as part of a one-week unsupervised robot-assisted program simulation. The study assesses user engagement, app interaction patterns, and the effectiveness of push notifications/smart reminders in sustaining adherence to the training program. The key components of this research are the development of a smart algorithm for triggering push notifications based on specific user behaviors, such as therapy completion or inactivity, to optimize adherence, as well as conducting the study with a few participants.

Keywords

Stroke, Traumatic Brain Injury, Rehabilitation Therapy, Adherence, Push Notifications, Mobile Health App, Interdisciplinary Research, Python, Django

Labels

Semester Project , Bachelor Thesis , Master Thesis , ETH Zurich (ETHZ)

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-02-12 , Earliest start: 2025-02-16 , Latest end: 2025-11-30

Organization Rehabilitation Engineering Lab

Hosts Retevoi Alexandra

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Benefits and challenges of promoting minimally supervised therapy in a rehabilitation clinic

Increasing the therapy time can benefit patients in multiple ways. Group therapy (e.g., technology-assisted) allows clinics to increase the therapy dose for patients without increasing the workload for therapists. However, in practical implementation, some challenges often arise (e.g., patients not liking it) that limit the efficacy of group therapy. The aim of this project is to gain practical experience with group therapy sessions (i.e., supporting group therapy sessions at the Clinica Hildebrand in Brissago), identify barriers and benefits related to group therapy, and propose guidelines to improve the integration of group therapy in clinical practice.

Keywords

practical internship, research internship, clinical work, technology-assisted therapy, group therapy, minimally supervised therapy

Labels

Internship

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-02-12 , Earliest start: 2025-03-01 , Latest end: 2025-10-31

Applications limited to ETH Zurich , EPFL - Ecole Polytechnique Fédérale de Lausanne , Università della Svizzera italiana

Organization Rehabilitation Engineering Lab

Hosts Devittori Giada

Topics Medical and Health Sciences

Coding Framework for Synchronisation of EEG and DBS Data

To synchronise data recorded from subcortical and cortical neural activity of Parkinson's patients, a coding framework needs to be established.

Keywords

neural activity data, signal processing, Parkinson's disease

Labels

Semester Project , Internship , Lab Practice , Bachelor Thesis , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-01-30 , Earliest start: 2025-01-30 , Latest end: 2025-07-31

Organization Rehabilitation Engineering Lab

Hosts Salzmann Lena, MSc

Topics Medical and Health Sciences , Engineering and Technology

Advancing Wearable Brain Imaging for Everyday Applications

Join us in revolutionizing brain imaging technologies and make it accessible for everyday use. Near-infrared imaging (NIRI) is an emerging technology that enables cost-effective and precise brain measurements, helping to improve neurotherapies and brain health.

Keywords

brain imaging, neuro, wearables, health, startup

Labels

Internship

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2025-01-23 , Earliest start: 2024-01-25 , Latest end: 2024-06-26

Organization Rehabilitation Engineering Lab

Hosts Wyser Dominik

Topics Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Multisensory assessment of physiological markers during neural stimulation for stroke rehabilitation

Project goal is to assess outcomes of a non-invasive brain stimulator for future application in stroke rehabilitation. This will involve using an exciting novel method of brain stimulation together with simultaneous multisensory recordings of various physiological parameters, including heart rate, galvanic skin response, pupillometry and electroencephalogram (EEG). The results of the project will help develop brain stimulation protocols that elicit meaningful neural responses in healthy subjects, and in stroke patients.

Keywords

neural stimulation, neural biomarkers, neurophysiology, physiology, neuroscience, EEG, pupillometry

Labels

Semester Project , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2024-11-11 , Earliest start: 2023-06-01

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius , Donegan Dane

Topics Engineering and Technology

Real-time control of neural stimulation for stroke patients.

Real-time analysis of movement kinematics can benefit multiple different strategies in rehabilitation after stroke, including allowing closed-loop brain stimulation. Use of inertial measurement units (IMUs) allows detection of movement and extraction of kinematic features, but application in real-time remains challenging. This project will develop algorithms for real-time movement data analysis and feature extraction in typical rehabilitation tasks and general real-life movements. In turn, these algorithms will be applied to control novel brain stimulation approaches in stroke neurorehabilitation.

Keywords

Inertial measurement unit, IMU, movement tracking, machine learning, real-time, signal processing

Labels

Semester Project , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2024-11-11 , Earliest start: 2023-05-09

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius , Donegan Dane

Topics Engineering and Technology

Mechanistic Evaluation of taVNS in Motor Adaptation for Stroke Rehabilitation

This study aims to evaluate the mechanisms by which transauricular vagus nerve stimulation (taVNS) may facilitate motor learning and adaptation, focusing on reticulospinal tract (RST) activation. A set of assessments will be used to build a comprehensive neurophysiological profile, providing insights relevant to developing taVNS-based clinical interventions. In this role, you will engage in study design, data collection, and analysis, gaining hands-on experience in mechanistic neurophysiological research with direct clinical applications.

Keywords

Transauricular vagus nerve stimulation (taVNS) Reticulospinal tract (RST) Motor learning StartReact paradigm Stroke rehabilitation Neurophysiology Multisite EMG Motor pathway activation Clinical neurostimulation

Labels

Semester Project , Internship , Bachelor Thesis , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2024-11-11 , Earliest start: 2024-11-24 , Latest end: 2025-10-26

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius

Topics Medical and Health Sciences , Engineering and Technology

Development of flexible, biocompatible electrodes for vagus nerve stimulation therapy

Stroke is the most common cause of disability and as many as 14 million people suffer a stroke every year. Typical therapy today is focused on physical exercises and rarely combats the core of the problem - the interactions between the motor actions and the activity patterns of the injured brain. Therefore, we are developing a cutting-edge medical device that helps combine physical therapy with a non-invasive brain stimulation. This is expected to boost recovery after stroke and make this advanced neuro-therapy accessible to millions of people who need it.

Keywords

Biocompatibility Conductive Materials Vagus Nerve Stimulation (VNS) Transcutaneous VNS (tVNS) Stroke Rehabilitation Therapy Medical Device Engineering Electrode Design and Prototyping Materials Science Biomedical Engineering Neurorehabilitation Clinical Usability Patient-Centred Design

Labels

Semester Project , Bachelor Thesis , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2024-11-11 , Earliest start: 2024-11-24 , Latest end: 2025-10-31

Organization Rehabilitation Engineering Lab

Hosts Viskaitis Paulius

Topics Medical and Health Sciences , Engineering and Technology

If you would like to carry out a Studies on Mechatronics project in our group, please contact the assistant working on, or closest to, the research topic you are interested in.

We currently have an open studies on mechatronics project aiming to evaluate and compare mechatronic designs for sensory/mechanical stimulation and massage of the feet. If interested, please contact .

Your Own Project Ideas?

It is always possible to find a project for motivated students with innovative ideas in the fields of rehabilitation, assistive and healthcare technology as well as haptics and motor learning. Please contact us if you would like to pursue a project which is not on the list above.

JavaScript has been disabled in your browser